BIOL 425: HUMAN GENETICS

Course Goals

Biology 425 serves both as an advanced genetics course and a survey of the exciting and rapidly evolving field of human genetics. Through lectures and reading of published research articles, we aim to have students gain an in-depth understanding of human genetics and research methods in human genetics. We also hope that students will acquire or improve their critical reading skills.

Prerequisites

An introductory course in genetics and molecular biology is a pre-requisite. If you did not do well in introductory genetics, you should consider carefully whether this course is appropriate for you. We will assume an understanding of basic genetic and molecular principles; you will be responsible for reviewing appropriate topics on your own before lectures, using online sources, your intro genetics text, or any of the texts currently used in BIOL 202.

Staff

Instructors: Dr. Jeff Sekelsky
Dr. Greg Copenhaver
303 Fordham Hall
4161 Genome Science Building
sekelsky@unc.edu
gcopenhaver@bio.unc.edu

Teaching Assistant: Michaelyn (Kale) Hartman
303 Fordham Hall
m4hart@email.unc.edu

See Sakai site for office hours.

Course meetings

Lectures: 9:30 – 10:45 am, Tues & Thurs, 217 Wilson Hall
The TA will schedule an optional recitation and optional review sessions before exams.

Grading

Final grades will be based on:
- 25% Exam I (Tuesday, Sept 29)
- 25% Exam II (Tuesday, Dec. 8, 8 am [final exam period])
- 30% Problem sets
- 10% Response papers for assigned reading
- 10% Group projects
Exams

There will be two exams: Exam I will be in class and Exam II will be given during the scheduled final exam period. Please note that the second exam is very late in the exam period and plan your travel accordingly, as make-up exams (including early exams) will not be given. Exams will consist of questions similar to those on problem sets, which emphasize conceptual understanding of human genetics. You will not need to know details from assigned articles, but you may be given a reminder of the essential data from an article and asked what main conclusions were drawn from the data, or you may be asked how an assigned reading fit into the principles being discussed at the time.

Problem Sets

Problem sets will be assigned approximately every two weeks, and will include problems and questions related to lectures and reading. Our goals with problems sets are to both reinforce and apply the material that was covered and, in some cases, extend beyond what we covered in class. Problem sets will involve a substantial effort. You may work collaboratively to solve the problems, but each student must write and turn in his or her own answers. Late problem sets will not be accepted or graded.

Readings

Many lectures will have an assigned reading in the form of a published research article. Assigned articles will be discussed in class. You should bring your copy of the article to class and be prepared to contribute to discussions. To facilitate participation, each student must post a response by 9 am before class on the day the article is being discussed. We will give instructions regarding different responses. Examples might be asking you to describe you actual response (what you thought of it, what it made you think of, etc.), listing facts and interpretations, describing figures in your own words, listing questions you had, etc..

Response papers will count for 10% of your final grade. Each response paper will be graded on a scale of 0-5. A response that shows only that you read the article will get a 3. If we can't even tell you read it, you will be given a lower score. Responses that show that you were conscious, engaged, and thinking while reading (which doesn't mean you have to understand it all) will get 4 or 5. We anticipate having 12-15 articles assigned. Your top ten scores will be counted toward your grade.

Group Projects and Presentations

Enrolled students will be placed into groups of 4-5 sometime after the second week of classes. Each group will conduct a research project and present the project to the class. Five class meetings at the end of the semester have been set aside for presentations, two per meeting. The Group Projects section of the Assignments page has more information.

Each group will select an article that we discussed in class, or another article in human genetics (subject to the approval of the TA; you may not select a paper that is related to research that any group member is currently or has been engaged in). The group will develop a plan for future research in the area, addressing questions left unanswered in the publication or raised by results in the publication. The group will meet with the TA to go over their plan and revise it. They will then put together a presentation for the class, meet with the TA to go over their presentation, and give the presentation to the class.

Showing up for and paying attention at the presentations of other groups is important. Students in the audience will fill out evaluation forms, which we also use to take attendance. Points are deducted from your total for each presentation that you miss or for which you are late. Additional details and guidance are available on the Group Projects section of the Assignments page.
Other Policies

- All aspects of the UNC Honor Code will be enforced.
- Re-grade requests must be made in writing within one week of receiving a grade (returned problem set, exam, etc.). Only errors in grading are considered, not requests for additional partial credit. We reserve the right to regrade the entire exam.
- We make various course materials available to you, including PowerPoint files, lecture notes, problem sets, and exams. These materials are copyrighted. **It is a violation of the honor code to distribute course materials outside of the classroom without written permission from the instructors.** This includes depositing in fraternity or sorority files or contributing to online repositories.
- **Recording of lectures is prohibited** unless explicit permission has been granted by the instructor (separate permission for each instructor). Use of cell phones is prohibited. Google Glass may not be worn during class. Computers are allowed, but only for taking notes or viewing PowerPoints and readings during discussion. Students caught using computers for other tasks (email, surfing, other reading, etc.) will lose computer privileges for the remainder of the semester.
- The schedule of classes provided below is subject to change! Human genetics is an exciting and fast-moving field. We strive to incorporate the latest advances, but sometimes this means we have to trim another topic that was planned. Also, since this is in part a discussion-based course, we often have to make small adjustments in response to discussions that are longer than anticipated.
Section I. Transmission and Molecular Genetics of Humans (Sekelsky)

Human Heredity and Inheritance (Aug 18, 20, 25)

Topics: Pedigrees, simple and complex inheritance

Readings (links take you to PubMed entries, but annotated PDFs will be posted to Sakai; dates are dates on which we discuss articles; these are also subject to change, so don’t get too far ahead):

The Human Genome (Aug 27, Sept 1, 3, 8, 10)

Topics: Sequencing the genome, the structure and content of the genome, genomics, variation

Readings:

Human Chromosomes (Sept 15, 17, 22)

Topics: Chromosomes and chromatin, mitosis and meiosis, aneuploidy, chromosome rearrangements, the X and Y chromosomes

Readings:

Tues Sept 29 EXAM I (in class)
Section II. Topics in Human Genetics (Copenhaver)

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Topic</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thurs</td>
<td>Oct 1</td>
<td>Recombination</td>
<td>Cheng</td>
</tr>
<tr>
<td>Tues</td>
<td>Oct 6</td>
<td>Segregation mapping</td>
<td>Sobreria</td>
</tr>
<tr>
<td>Thurs</td>
<td>Oct 8</td>
<td>Association mapping</td>
<td>He</td>
</tr>
<tr>
<td>Tues</td>
<td>Oct 13</td>
<td>Identifying human disease genes</td>
<td>Xia</td>
</tr>
<tr>
<td>Thurs</td>
<td>Oct 15</td>
<td>FALL BREAK</td>
<td></td>
</tr>
<tr>
<td>Tues</td>
<td>Oct 20</td>
<td>Epigenetics</td>
<td>Cree</td>
</tr>
<tr>
<td>Thurs</td>
<td>Oct 22</td>
<td>Mitochondrial genetics</td>
<td></td>
</tr>
<tr>
<td>Tues</td>
<td>Oct 27</td>
<td>Ethics</td>
<td></td>
</tr>
<tr>
<td>Thurs</td>
<td>Oct 29</td>
<td>Cancer genetics</td>
<td>Jones</td>
</tr>
<tr>
<td>Tues</td>
<td>Nov 3</td>
<td>Guest Lecture by Dr. Jim Evans: Personal genetics in the clinic</td>
<td></td>
</tr>
<tr>
<td>Thurs</td>
<td>Nov 5</td>
<td>Pharmacogenetics</td>
<td>Hulot</td>
</tr>
<tr>
<td>Tues</td>
<td>Nov 10</td>
<td>Gene therapy</td>
<td>Lombardo</td>
</tr>
</tbody>
</table>

Section III. Student Presentations

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Topic</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thurs</td>
<td>Nov 12</td>
<td>STUDENT PRESENTATIONS</td>
<td>1 and 2</td>
</tr>
<tr>
<td>Tues</td>
<td>Nov 17</td>
<td>STUDENT PRESENTATIONS</td>
<td>3 and 4</td>
</tr>
<tr>
<td>Thurs</td>
<td>Nov 19</td>
<td>STUDENT PRESENTATIONS</td>
<td>5 and 6</td>
</tr>
<tr>
<td>Tues</td>
<td>Nov 24</td>
<td>STUDENT PRESENTATIONS</td>
<td>7 and 8</td>
</tr>
<tr>
<td>Thurs</td>
<td>Nov 26</td>
<td>THANKSGIVING</td>
<td></td>
</tr>
<tr>
<td>Tues</td>
<td>Dec 1</td>
<td>STUDENT PRESENTATIONS</td>
<td>9 and 10</td>
</tr>
<tr>
<td>Tues</td>
<td>Dec 8</td>
<td>EXAM II: 8:00 am - 11:00 am</td>
<td></td>
</tr>
</tbody>
</table>